【人工智能导论:模型与算法】MOOC 8.3 误差后向传播(BP) 例题 编程验证

8.3 误差后向传播(BP)

原理和推导过程,参考慕课。
https://www.icourse163.org/course/ZJU-1003377027


输入值:x1, x2 = 0.5,0.3

输出值:y1, y2 =0.23, -0.07

激活函数:sigmoid

损失函数:MSE

初始权值:0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8

目标:通过反向传播优化权值


 

反向传播1轮,检验PPT数值

=====正向计算:h1, h2, o1 ,o2=====0.56 0.5 0.48 0.53

=====损失函数:均方误差=====0.21

=====反向传播:误差传给每个权值=====0.01 0.01 0.01 0.01 0.03 0.08 0.03 0.07

=====更新前的权值=====0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8

=====更新后的权值=====0.19 -0.41 0.49 0.59 0.07 -0.58 -0.33 0.73

import numpy as np   def sigmoid(z):     a = 1 / (1 + np.exp(-z))     return a   if __name__ == __main__:     w1 = 0.2     w2 = -0.4     w3 = 0.5     w4 = 0.6     w5 = 0.1     w6 = -0.5     w7 = -0.3     w8 = 0.8      x1 = 0.5     x2 = 0.3      y1 = 0.23     y2 = -0.07      print(=====输入值:x1, x2;真实输出值:y1, y2=====)     print(x1, x2, y1, y2)      in_h1 = w1 * x1 + w3 * x2     out_h1 = sigmoid(in_h1)     in_h2 = w2 * x1 + w4 * x2     out_h2 = sigmoid(in_h2)      in_o1 = w5 * out_h1 + w7 * out_h2     out_o1 = sigmoid(in_o1)     in_o2 = w6 * out_h1 + w8 * out_h2     out_o2 = sigmoid(in_o2)      print(=====正向计算:h1, h2, o1 ,o2=====)     print(round(out_h1, 2), round(out_h2, 2), round(out_o1, 2), round(out_o2, 2))      error = (1 / 2) * (out_o1 - y1)**2 + (1 / 2) * (out_o2 - y2)**2      print(=====损失函数:均方误差=====)     print(round(error, 2))      # 反向传播     d_o1 = out_o1 - y1     d_o2 = out_o2 - y2     # print(round(d_o1, 2), round(d_o2, 2))      d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1     d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2     # print(round(d_w5, 2), round(d_w7, 2))     d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1     d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2     # print(round(d_w6, 2), round(d_w8, 2))      d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1     d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2     # print(round(d_w1, 2), round(d_w3, 2))      d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1     d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2     # print(round(d_w2, 2), round(d_w4, 2))     print(=====反向传播:误差传给每个权值=====)     print(round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2), round(d_w7, 2),           round(d_w8, 2))      print(=====更新前的权值=====)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))      w1 = w1 - d_w1     w2 = w2 - d_w2     w3 = w3 - d_w3     w4 = w4 - d_w4     w5 = w5 - d_w5     w6 = w6 - d_w6     w7 = w7 - d_w7     w8 = w8 - d_w8      print(=====更新后的权值=====)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))
View Code

 

增加到5轮,测试收敛

=====第6轮=====

正向计算:h1, h2, o1 ,o2

0.55 0.48 0.44 0.43

损失函数:均方误差

0.15

import numpy as np   def sigmoid(z):     a = 1 / (1 + np.exp(-z))     return a   def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):     in_h1 = w1 * x1 + w3 * x2     out_h1 = sigmoid(in_h1)     in_h2 = w2 * x1 + w4 * x2     out_h2 = sigmoid(in_h2)      in_o1 = w5 * out_h1 + w7 * out_h2     out_o1 = sigmoid(in_o1)     in_o2 = w6 * out_h1 + w8 * out_h2     out_o2 = sigmoid(in_o2)      print(正向计算:h1, h2, o1 ,o2)     print(round(out_h1, 2), round(out_h2, 2), round(out_o1, 2), round(out_o2, 2))      error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2      print(损失函数:均方误差)     print(round(error, 2))      return out_o1, out_o2, out_h1, out_h2   def back_propagate(out_o1, out_o2, out_h1, out_h2):     # 反向传播     d_o1 = out_o1 - y1     d_o2 = out_o2 - y2     # print(round(d_o1, 2), round(d_o2, 2))      d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1     d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2     # print(round(d_w5, 2), round(d_w7, 2))     d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1     d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2     # print(round(d_w6, 2), round(d_w8, 2))      d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1     d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2     # print(round(d_w1, 2), round(d_w3, 2))      d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1     d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2     # print(round(d_w2, 2), round(d_w4, 2))     print(反向传播:误差传给每个权值)     print(round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2),           round(d_w7, 2), round(d_w8, 2))      return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8   if __name__ == __main__:     w1 = 0.2     w2 = -0.4     w3 = 0.5     w4 = 0.6     w5 = 0.1     w6 = -0.5     w7 = -0.3     w8 = 0.8     x1 = 0.5     x2 = 0.3     y1 = 0.23     y2 = -0.07     print(=====输入值:x1, x2;真实输出值:y1, y2=====)     print(x1, x2, y1, y2)     print(=====更新前的权值=====)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))      out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)      # 步长     step = 1      w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8      print(第1轮更新后的权值)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))      print(=====第2轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8      print(=====第3轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8      print(=====第4轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8      print(=====第5轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8      print(=====第6轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     print(更新后的权值)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))
View Code

 

改变步长(1变为50),看收敛速度

=====第6轮=====

正向计算:o1 ,o2

0.23 0.03

损失函数:均方误差

0.01

import numpy as np   def sigmoid(z):     a = 1 / (1 + np.exp(-z))     return a   def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):     in_h1 = w1 * x1 + w3 * x2     out_h1 = sigmoid(in_h1)     in_h2 = w2 * x1 + w4 * x2     out_h2 = sigmoid(in_h2)      in_o1 = w5 * out_h1 + w7 * out_h2     out_o1 = sigmoid(in_o1)     in_o2 = w6 * out_h1 + w8 * out_h2     out_o2 = sigmoid(in_o2)      print(正向计算:o1 ,o2)     print(round(out_o1, 2), round(out_o2, 2))      error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2      print(损失函数:均方误差)     print(round(error, 2))      return out_o1, out_o2, out_h1, out_h2   def back_propagate(out_o1, out_o2, out_h1, out_h2):     # 反向传播     d_o1 = out_o1 - y1     d_o2 = out_o2 - y2     # print(round(d_o1, 2), round(d_o2, 2))      d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1     d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2     # print(round(d_w5, 2), round(d_w7, 2))     d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1     d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2     # print(round(d_w6, 2), round(d_w8, 2))      d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1     d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2     # print(round(d_w1, 2), round(d_w3, 2))      d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1     d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2     # print(round(d_w2, 2), round(d_w4, 2))     print(反向传播:误差传给每个权值)     print(round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2),           round(d_w7, 2), round(d_w8, 2))      return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8   def update_w(w1, w2, w3, w4, w5, w6, w7, w8):     # 步长     step = 50     w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8     return w1, w2, w3, w4, w5, w6, w7, w8   if __name__ == __main__:     w1 = 0.2     w2 = -0.4     w3 = 0.5     w4 = 0.6     w5 = 0.1     w6 = -0.5     w7 = -0.3     w8 = 0.8     x1 = 0.5     x2 = 0.3     y1 = 0.23     y2 = -0.07     print(=====输入值:x1, x2;真实输出值:y1, y2=====)     print(x1, x2, y1, y2)     print(=====更新前的权值=====)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))      out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)      print(第1轮更新后的权值)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))      print(=====第2轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)      print(=====第3轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)      print(=====第4轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)      print(=====第5轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)     w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)      print(=====第6轮=====)     out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)     print(更新后的权值)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))
View Code

 

扩展到N轮,步长=5,训练N=1000次,查看效果

=====第999轮=====

正向计算:o1 ,o2

0.23038 0.00954

损失函数:均方误差

0.00316

 

import numpy as np   def sigmoid(z):     a = 1 / (1 + np.exp(-z))     return a   def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):     in_h1 = w1 * x1 + w3 * x2     out_h1 = sigmoid(in_h1)     in_h2 = w2 * x1 + w4 * x2     out_h2 = sigmoid(in_h2)      in_o1 = w5 * out_h1 + w7 * out_h2     out_o1 = sigmoid(in_o1)     in_o2 = w6 * out_h1 + w8 * out_h2     out_o2 = sigmoid(in_o2)      print(正向计算:o1 ,o2)     print(round(out_o1, 5), round(out_o2, 5))      error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2      print(损失函数:均方误差)     print(round(error, 5))      return out_o1, out_o2, out_h1, out_h2   def back_propagate(out_o1, out_o2, out_h1, out_h2):     # 反向传播     d_o1 = out_o1 - y1     d_o2 = out_o2 - y2     # print(round(d_o1, 2), round(d_o2, 2))      d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1     d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2     # print(round(d_w5, 2), round(d_w7, 2))     d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1     d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2     # print(round(d_w6, 2), round(d_w8, 2))      d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1     d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2     # print(round(d_w1, 2), round(d_w3, 2))      d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1     d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2     # print(round(d_w2, 2), round(d_w4, 2))     print(反向传播:误差传给每个权值)     print(round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),           round(d_w7, 5), round(d_w8, 5))      return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8   def update_w(w1, w2, w3, w4, w5, w6, w7, w8):     # 步长     step = 5     w1 = w1 - step * d_w1     w2 = w2 - step * d_w2     w3 = w3 - step * d_w3     w4 = w4 - step * d_w4     w5 = w5 - step * d_w5     w6 = w6 - step * d_w6     w7 = w7 - step * d_w7     w8 = w8 - step * d_w8     return w1, w2, w3, w4, w5, w6, w7, w8   if __name__ == __main__:     w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8     x1, x2 = 0.5, 0.3     y1, y2 = 0.23, -0.07     print(=====输入值:x1, x2;真实输出值:y1, y2=====)     print(x1, x2, y1, y2)     print(=====更新前的权值=====)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))      for i in range(1000):         print(=====第 + str(i) + 轮=====)         out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)         d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)         w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)      print(更新后的权值)     print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),           round(w8, 2))
View Code

 

修改输出值y2为正,收敛效果很好。

原因是:sigmoid,输出值应在(0,1)区间,所以最开始的假设 y2=-0.07,在这个模型里,无法很好的拟合。


 

优化后的源代码:

 

import numpy as np
import matplotlib.pyplot as plt


def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8): # 正向传播
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2)

in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2)

error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

return out_o1, out_o2, out_h1, out_h2, error


def back_propagate(out_o1, out_o2, out_h1, out_h2): # 反向传播
d_o1 = out_o1 - y1
d_o2 = out_o2 - y2

d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2

d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2

return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(step,w1, w2, w3, w4, w5, w6, w7, w8): #梯度下降,更新权值
w1 = w1 - step * d_w1
w2 = w2 - step * d_w2
w3 = w3 - step * d_w3
w4 = w4 - step * d_w4
w5 = w5 - step * d_w5
w6 = w6 - step * d_w6
w7 = w7 - step * d_w7
w8 = w8 - step * d_w8
return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == __main__:
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8 # 可以给随机值,为配合PPT,给的指定值
x1, x2 = 0.5, 0.3 # 输入值
y1, y2 = 0.23, -0.07 # 正数可以准确收敛;负数不行。why? 因为用sigmoid输出,y1, y2 在 (0,1)范围内。
N = 10 # 迭代次数
step = 10 # 步长

print(输入值:x1, x2;,x1, x2, 输出值:y1, y2:, y1, y2)
eli = []
lli = []
for i in range(N):
print(=====第 + str(i) + 轮=====)
# 正向传播
out_o1, out_o2, out_h1, out_h2, error = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
print(正向传播:, round(out_o1, 5), round(out_o2, 5))
print(损失函数:, round(error, 2))
# 反向传播
d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
# 梯度下降,更新权值
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(step,w1, w2, w3, w4, w5, w6, w7, w8)
eli.append(i)
lli.append(error)


plt.plot(eli, lli)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()