【Pandas vs SQL】数据分析代码逐行比对,孰优孰劣?

在数据分析领域,pandas是python数据分析基础工具,SQL是数据库最常用分析语言。二者有相通的地方,也有很大的语法不同,做起数据分析来,谁将更胜一筹呢?

做过业务开发、跟数据库打交道比较多的小伙伴,经常会提到”增删改查“操作,分别对应数据的增加、删除、修改、查询,这4个操作。

下面,我将从查、增、删、改四个维度,依次比对pandas和SQL的实现步骤,比较二者的优劣。

文末含获取Python源码文件方式!

【讲解视频】此文章同步讲解视频:
https://www.zhihu.com/zvideo/1463296616861536256
https://www.zhihu.com/zvideo/1468878502435385344

【准备数据】数据分析对象-B站top100排行榜数据
这里,我采用B站top100排行榜的数据,作为数据分析对象。

想学习如何爬取top100排行榜数据的小伙伴,请移步至:
https://www.zhihu.com/zvideo/1442441321721663488
爬取下来的数据,存到excel:

数据准备完毕,开始数据分析,pandas和SQL进行逐行比对!

一、查询

1.1 查询前3行

pandas查询前3行:

SQL查询前3行:

1.2 查询后3行

pandas查询后3行:

SQL查询后3行:

1.3 查询指定列

pandas方法1(中括号[]):

pandas方法2(loc):

pandas方法3(iloc):

【马哥小贴士】关于loc和iloc的说明:
loc:works on labels in the index.(通过索引名定位)
iloc:works on the positions in the index (so it only takes integers).(通过索引值定位)

SQL查询指定列:

1.4 按条件查询

pandas单条件查询:

SQL单条件查询:

pandas多条件查询(并且关系):
SQL多条件查询(并且关系AND):
pandas多条件查询(或者关系):
SQL多条件查询(或者关系OR):

二、增加

2.1 增加行

pandas方法1(append):

pandas方法2(loc):

pandas方法3(concat):

SQL增加一行:

SQL增加多行:

2.2 增加列

pandas方法1(中括号[]):

pandas方法2(insert):

SQL增加一列:

三、删除

3.1 删除行

pandas方法1(drop-行名):
pandas方法2(drop-行号):

pandas方法3(drop-删除特定条件的行):

SQL删除多行:

3.2 删除列

pandas方法1(drop):

pandas方法2(del):

SQL删除一列:

四、修改

4.1 pandas方法1(loc):

4.2 pandas方法2(iloc):

4.3 SQL修改一个值

4.4 SQL修改多个值

五、四种连接方法


待分析数据:

5.1 左连接(Left Join)

pandas左连接:

SQL左连接:

5.2 右连接(Right Join)

pandas右连接:

SQL右连接:

5.3 内连接(Inner Join)

pandas内连接1:

pandas内连接2:(注意!根据索引连接)

pandas内连接3:(注意!根据索引连接)

SQL内连接1:

SQL内连接2:

SQL内连接3:

5.4 外连接(Outer Join)

pandas外连接1:

pandas外连接2:

pandas外连接3:

SQL外连接:(注意:MySQL不支持全连接,通过UNION实现)

END:马哥经验总结

怎么选择用哪个工具(Pandas or SQL)

根据数据存储类型,选择用哪个
·如果数据存储在数据库里,直接用SQL分析,比较方便。
·如果数据存储在Excel,或者csv、txt等文本类数据,或者从网页爬取下的结构化数据,存储为pandas的DataFrame格式再分析,比较方便。

根据数据量、性能,选择用哪个
·大部分情况下,Pandas比SQL的运行性能更优。

文无第一,武无第二 | 没有绝对的谁更好,只有更适合的分析场景!


同步公号文章:https://mp.weixin.qq.com/s?__biz=MzU5MjQ2MzI0Nw==&mid=2247484154&idx=1&sn=c4f629b5bd1df12e3ea857284ce7d7f7&chksm=fe1e161ac9699f0c925713b6a679ccb28095e5b773f77b915ea01be1457a87bd71860bbe8b8b&token=928226833&lang=zh_CN#rd