LeetCode 0085 Maximal Rectangle
1. 题目描述

2. Solution 1
1、思路分析
以 example 1. 为例
matrix = [
[1,0,1,0,0],
[1,0,1,1,1],
[1,1,1,1,1],
[1,0,0,1,0]
]
分析: 遍历 行(row)
row = 1: 可以得到 heights = [1, 0, 1, 0, 0] 套用 Q84
row = 2: -> heights = [2, 0, 2, 1, 1]
......
2、代码实现
package Q0099.Q0085MaximalRectangle; import java.util.ArrayDeque; import java.util.Deque; /* 以 example 1. 为例 matrix = [ [1,0,1,0,0], [1,0,1,1,1], [1,1,1,1,1], [1,0,0,1,0] ] 分析: 遍历 行(row) row = 1: 可以得到 heights = [1, 0, 1, 0, 0] 套用 Q84 row = 2: -> heights = [2, 0, 2, 1, 1] ...... */ public class Solution1 { public int maximalRectangle(char[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0; int col = matrix[0].length; int[] heights = new int[col]; int max = 0; for (char[] chars : matrix) { for (int j = 0; j < col; j++) { if (chars[j] == '1') { heights[j]++; } else { heights[j] = 0; } } int area = largestRectangleArea(heights); max = Math.max(max, area); } return max; } // 来自 Q84 public int largestRectangleArea(int[] heights) { int len = heights.length; Deque<Integer> s = new ArrayDeque<>(); int maxArea = 0; for (int i = 0; i <= len; i++) { int h = (i == len ? 0 : heights[i]); if (s.isEmpty() || h >= heights[s.peek()]) { s.push(i); } else { int tp = s.pop(); int width = (s.isEmpty() ? i : i - 1 - s.peek()); maxArea = Math.max(maxArea, heights[tp] * width); i--; } } return maxArea; } } 3、复杂度分析
时间复杂度: O(m * n) 其中 dim(matrix) = (m, n)
空间复杂度: O(n) 栈
2. Solution 2
1、思路分析
思路同Solution 1,用数组模拟栈。
2、代码实现
package Q0099.Q0085MaximalRectangle; public class Solution2 { /* 执行耗时:2 ms,击败了100.00% 的Java用户 内存消耗:41.8 MB,击败了36.24% 的Java用户 */ //方案2 public int maximalRectangle(char[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0; int m = matrix.length; int n = matrix[0].length; int[] dp = new int[n + 1];//增加一列,简化边界处理 int res = 0; for (int row = 0; row < m; row++) { updateHeight(dp, row, matrix); res = Math.max(res, maxArea(dp)); } return res; } public void updateHeight(int[] dp, int row, char[][] matrix) { for (int column = 0; column < matrix[row].length; column++) { dp[column] = matrix[row][column] == '1' ? dp[column] + 1 : 0; } } public int maxArea(int[] heights) { int l = 0, r = 0; int n = heights.length; int[] pos = new int[n + 1]; pos[l] = -1; int res = 0; while (r < n) { while (l > 0 && heights[r] < heights[pos[l]]) { int h = heights[pos[l--]]; res = Math.max(res, h * (r - pos[l] - 1)); } pos[++l] = r++; } return res; } } 3、复杂度分析
时间复杂度: O(m * n) 其中 dim(matrix) = (m, n)
空间复杂度: O(n) 栈